salzburg**research**

Ferdinand von Tüllenburg Layer-2 Failure Recovery Methods in Critical Communication Networks

In future rising complexity:

- Interconnection / growing of distinct CI
- Massive inclusion of sensors, actuators, mobile devices
- To create new services / businesses
- Also over long distances (WAN)

- Need for
 - Standardization of communication
 - Flexibility and programmability
 - Simpler maintainability / management
 - Enhance Dependability of Communication

What means Dependable Communication?

Reliability / Availability

· Perform required functionality for a period of time

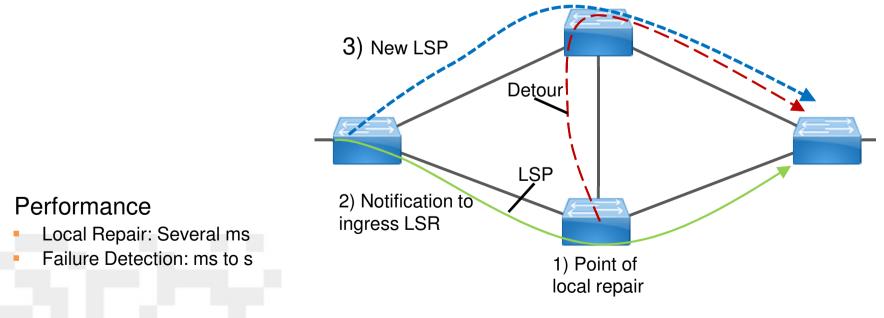
Required functionality

- Quality of Server (QoS)
- Assured Service

Means of Dependable Communication

- Fault Tolerance
- Fault Detection/Isolation
- Fault Avoidance
- Fault Restoration

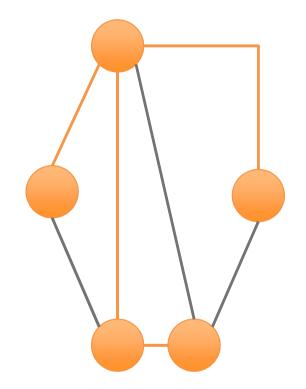
Focus on fault tolerance mechanisms


- Main idea: Reroute traffic quickly when fault occurs
- 3 Approaches:
 - RSVP-TE
 - RSTP
 - OpenFlow Fast Failover Groups

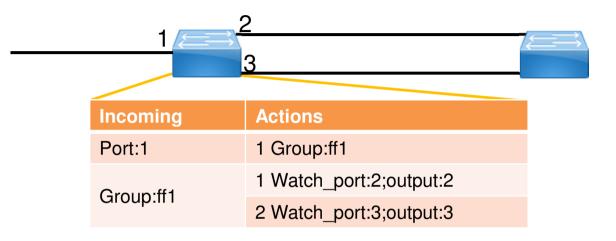
RSVP-TE Fast Reroute

- MPLS Approach
 - Packets are labeled at ingress-routers
 - Labled packets are fast-switched at core routers via LSP
 - Including Resource Reservation
- Proposed for

© salzburgresearch

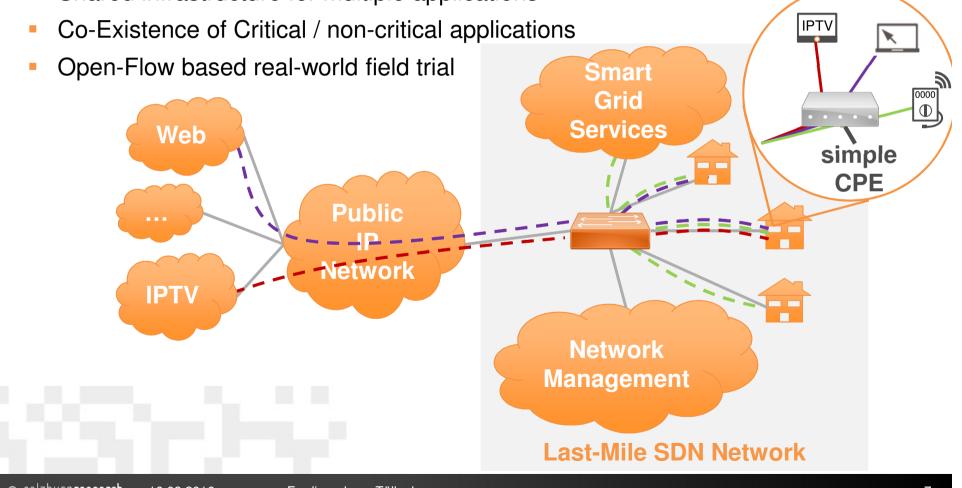

- Bandwidth separation, traffic separation, increasing reliability
- RSVP-TE Fast Reroute Operation
 - Pre-computation / pre-establishment of several detours
 - Detours provide local repair capabilities

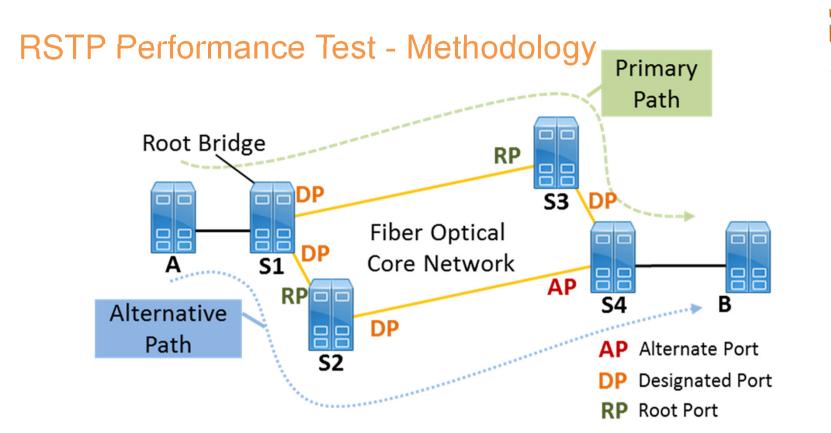
Rapid Spanning Tree Protocol



- Layer-2 protocol used for loop avoidance
- Bridges build Minimal Spanning Tree (MST)
 - Cost based
- Redundant links are used as backup
 - Root Ports: Forwarding port. Best connection to root bridge
 - Designated Ports: Forwarding port to a network segment
 - Alternate / Backup Ports: blocked port to another network segment.
 - Can be quickly activated.
- In case of link failure:
 - Topology change message is generated (by detecting node)
 - New spanning tree is computed
 - After computation: Fast switch over

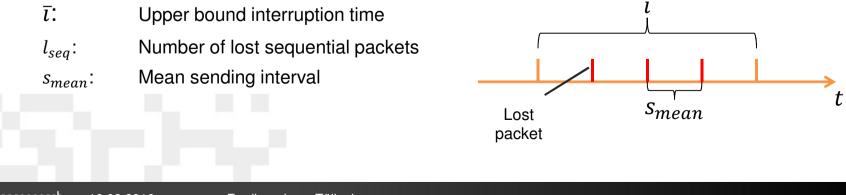
OpenFlow Fast Failover Groups




- Provides link redundancy
 - Watches port liveness/status.
 - Connect forwarding rules to the liveness/status of ports/links
 - Packets are sent via the first port with status 'up'
- Data plane only forwarding decision / No distributed algorithm
- Good for time sensitive applications
- In larger networks
 - Control plane manages Failover Groups (e.g. NFV)
 - See also: Du, Pfeiffenberger, Bittencourt

OPOSSUM OpenFlow Testbed

- Testbed for SDN based Critical Infrastructure Communication
- Traffic Separation for critical and non-critical applications
- Shared infrastructure for multiple applications


- Automatic Link (de)activation every 10 s at S3.
- After Disconnection
 - S3 selects itself as new root
 - Sends information replies with S1 as root bridge and enables AP
 - Measurement
 - Interruption time is estimated based on lost sequential packets (next slide)

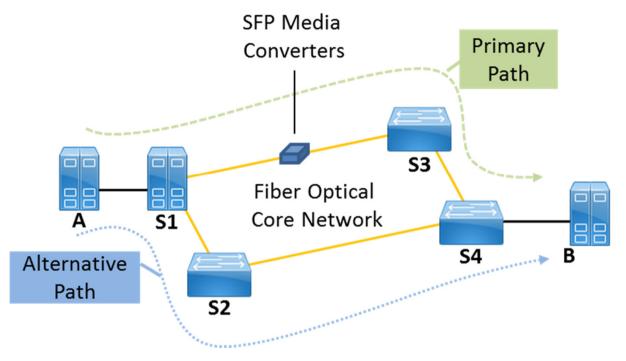
Measurement Methodology

- UDP Sending Application
 - 288 Byte Ethernet Packets
 - 500 us mean sending interval
 - UDP Payload contains sending timestamp, packet sequence number (starting with 0)
- UDP Receiving Application
 - Evaluates lost, duplicated, and reordered packets
 - Computes one way delay (when time sync. Is well)
- Computing Interruption time

$$\overline{\iota} = s_{mean} \times (l_{seq} + 1)$$

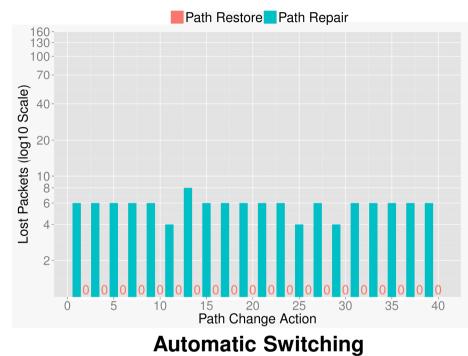
RSTP Performance Test - Results

- 40 Actions
 - 20 Disconnections leads to path repair action
 - 20 Reconnections leads to path restore action
- Path Repair Performance
 - Minimum 3 ms
 - Maximum 65 ms
 - Average (mean): 26 ms
- Path Restore Performance
 - Minimum: < 1 ms (no packet loss).
 - Maximum: 809 ms
 - Average (mean): 401 ms


- Good Performance
 - 50 ms upper threshold for applications

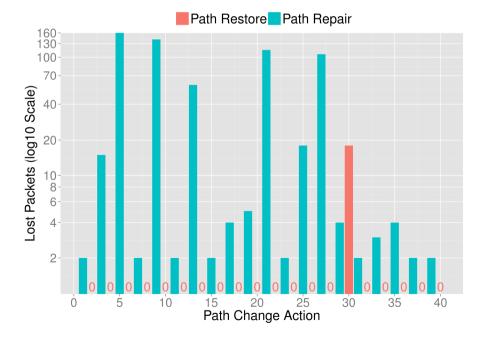
- Remarkable Behavior due to:
 - MAC Address Flushing
 - Inefficient Software implementation
 - Operating System Scheduling / Hardware Control at Host Computer

OpenFlow Fast-Failover Test - Methodology



- Two Test scenarios
 - Automated: Simulation of software failures
 - Manual: Simulation of link failures
 - Uses SFP Media Converter as interrupter to avoid contact chatter

ig i


OpenFlow Fast-Failover Test - Results

- Mean packet sending interval: 500 us
- Path Repair (green)
 - Min.: 4 Pkts, Max: 8 Pkts, Mean: 6 Pkts.
 - Interruption time \overline{i} : [3, 5] ms (Avg: 3,5 ms)
- Path Restore (red)
 - No Interruption

Manual Switching

- Mean packet sending interval: 500 us
- Path Repair (green)
 - Min.: 2 Pkts, Max: 160 Pkts, Mean: 33 Pkts.
 - Mean Interruption time \overline{i} : [2, 81] ms (Avg.: 17 ms)
- Path Restore (red)
 - Action 30: 18 Pkts lost (interruption time ~10ms)

Results Comparision

Average Failover Times	OpenFlow Fast Failover		RSTP	RSTP [Siemens]
	Automatic	Manual		
Path Repair	< 5 ms	< 20 ms	< 30 ms	< 50 ms
Path Restore	No interruption	Mostly no Interruption	< 500 ms	n. a.

Conclusion

- Hard to verify RSTP results
 - Software Switches (OVS) influenced by
 - Host Hardware
 - Operating System (e. g. Scheduling)
 - Possibly algorithms not properly implemented
- OpenFlow Fast Failover
 - Contact Chatter when manually plugging optical cables
 - Remarkable Differences between manual and automatic Test scenarios
 - Degraded operation modes of NIC drivers
 - Takes long until OVS gets informed about lost link

Conclusion & Future Work

- Good Performance of OpenFlow FastFailover
 - sub 10 ms range possible.
 - Better then RSTP (?)
 - Simpler, cheaper as MPLS
 - Well suited for being integrated into OPOSSUM Testbed
- But: Performance depends
 - Software Switch implementation issues
 - Link failures vs. Software failures

- For the future:
 - Improving our measurements
 - Sub-millisecond accuracy (using PTP, Sync-E)
 - Study further:
 - RSVP-TE Fast Reroute with OpenFlow Fast Failover

Summary

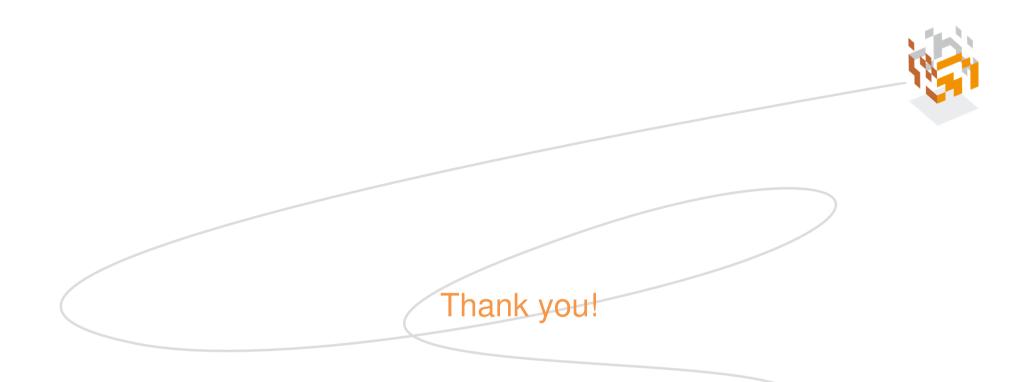
Task: Buidling a Testbed for Critical Infrastructures Communication

Failover Mechanisms are important!

MPLS Approach

- Good Performance
- · Complex to manage / install
- Needs IP based infrastructure
- Expensive

RSTP Approach


- · Supported by almost all Network devices
- Layer-2

OpenFlow Fast Failover

- New SDN based approach
- How is the performance?

What has been shown:

- · OpenFlow provides a pretty good performance
- Makes it a promising candidate for CI communication.

salzburg**research**

Ferdinand von Tüllenburg Position Salzburg Research Forschungsgesellschaft mbH Jakob Haringer Straße 5/3 | 5020 Salzburg, Austria T +43.662.2288-0 | F -222 vorname.nachname@salzburgresearch.at