
Software-defined Networking for Real-time Ethernet

Jia Lei Du and Matthias Herlich
Salzburg Research, Jakob Haringer Straße 5/3, Salzburg, Austria

{jia.du, matthias.herlich}@salzburgresearch.at

Keywords: Software-defined Networking, Real-time Ethernet

Abstract: Real-time Ethernet is used in many industrial and embedded systems, but has so far mostly been statically

configured. However, in the future these network configurations will be required to change dynamically, for

example for highly flexible production lines or even software upgrades in modern cars that add new features

which require changes to the in-vehicle network. Software-defined networking (SDN) is already

increasingly used to dynamically configure non-real-time networks. In this paper we explore the idea of a

software-defined real-time Ethernet. We analyze the features of current real-time Ethernet protocols, the

applicability of SDN and give an overview of potential advantages of software-defined networking for real-

time communication which can enable features not achievable using current solutions. In the future this

development will likely lead to more flexible, efficient and robust real-time networks.

1 INTRODUCTION

Real-time Ethernet (RTE) allows the use of cost

effective, widespread and high-bandwidth Ethernet

technology in industrial environments like

automation, process control and transportation

where one key challenge is real-time

communication, i.e. communication with guaranteed

upper bounds for latency and latency variations

(jitter). Various solutions like Ethernet Powerlink,

VARAN, Profinet and TTEthernet have been

developed to extend standard Ethernet with real-time

capabilities.

Typical RTE deployments in the past have been

configured once to run without re-configuration for

years or even decades. However, in the future RTE

networks will need to be more flexible due to a

variety of reasons: To produce small lot sizes in a

production environment efficiently, the underlying

network must support quick reconfigurations to

fulfill new requirements (Dürkop, Jasperneite &

Fay, 2015). Or in-vehicle networks could be

reconfigured through software updates for example

when a new driver assistance feature needs a higher

sample rate from a proximity sensor.

In non-real-time networks software-defined

networking (SDN) is a technology that provides a

great range of freedom to flexibly and centrally

reconfigure the network on-demand. The basic idea

of SDN is to control network flows through a

centralized intelligent controller with “dumb”

forwarding devices in the data plane of the network

(McKeown et al., 2008). By monitoring network-

wide state, the controller obtains an up-to-date view

of the network and can dynamically adapt flows as

necessary. The concept of SDN allows a wide range

of traffic engineering, security and other

applications. For example, flows can be dynamically

rerouted based on load, failure or security scenarios

to provide certain bandwidth or latency properties,

fast failover mechanisms or security services. From

an economic point of view, through standardization

and centralization, SDN has the potential to simplify

and reduce costs for network setup and operation.

 In this paper we will describe our idea to apply

software-defined networking in real-time Ethernet

networks to benefit from SDN advantages while

keeping the deterministic properties of RTE. In

detail we propose replacing the switches/hubs of

real-time Ethernet solutions with SDN-capable

switches. Note that we do not consider replacing the

real-time protocols themselves but to extend RTE

protocols by providing additional features that the

use of SDN controllers and switches make possible.

For this purpose we first describe SDN in the next

section. Then we describe features typical RTE

solutions provide. Finally, we discuss the advantages

and disadvantages of using SDN in an RTE network

and give an approach how to validate these claims.

Presented at the 13th International Conference on
Informatics in Control, Automation and Robotics (ICINCO),
July 2016, http://www.icinco.org/

2 RELATED WORK

Gopalakrishnan (Gopalakrishnan, 2014) and

Kalman (Kalman, 2014) both consider how SDN

can be used in industrial communication networks.

Gopalakrishnan provides a general list of SDN

features and gives some examples how the

advantages could be applied to an IEC 61850-based

network, but only mentions real-time capabilities in

passing. Kalman focuses on hardware abstractions

and the ability to automatically configure networks

using SDN. While both consider the advantages of

SDN, they do not focus on the specific requirements

and advantages SDN can bring to real-time

networks, but on industrial communication networks

in general.

(Dürkop, Jasperneite & Fay, 2015) provides a

high-level concept for the automatic configuration of

real-time Ethernet solutions. Our paper focuses on

the communication aspect in more detail and

proposes using SDN as an approach for network

(re-)configurations. Furthermore, automatic

(re-)configuration is only one of the advantages we

describe in this paper that software-defined

networking can bring to RTE networks.

3 SOFTWARE-DEFINED

NETWORKING BACKGROUND

In most conventional communication networks,

traffic flows are established based on forwarding

rules that are locally determined using distributed

algorithms. In contrast to this approach, traffic flows

in software-defined networks (SDNs) are centrally

configured by network applications via so-called

controllers. This effectively decouples the control

plane, which determines where traffic is sent, from

the data plane, which forwards packets to their

destinations. When a packet that matches a rule

arrives at a network device, the associated actions

are performed. Possible actions include the

modification of packet headers and the dropping or

forwarding of packets. Figure 1 illustrates the

interaction between lower layer SDN forwarding

devices, the SDN controller with its applications,

and RTE devices.

 One standard for the implementation of

software defined networks is OpenFlow (Open

Networking Foundation, 2015). The OpenFlow

standard defines a communication protocol between

network switches and one or more controllers. The

ideas in this paper can be applied to all SDNs, but

we will use OpenFlow as example when illustrating

our ideas.

Figure 1. In SDN the network devices (middle) forward

network flows programmed by a SDN controller (top)

between end-devices (left/right). The SDN controller

could also be integrated into one of the end-devices.

One key risk of an SDN is related to the

availability of the controller that is required for

configuring the network devices. Both the controller

itself and the connection between network devices

and controller represent possible single points of

failures and bottlenecks. To mitigate risks of

controller unavailability usually the use of multiple

controllers in an SDN is suggested such as in

(Yeganeh & Ganjali, 2012; Jain et al., 2013; Yazici,

Sunay & Ercan, 2014).

4 REAL-TIME ETHERNET

FEATURES

We have exemplarily chosen Ethernet Powerlink

(Ethernet Powerlink Standardization Group, 2016),

Profinet (International Electrotechnical Commission,

2014), TTEthernet (SAE Aerospace, 2011),

VARAN (VARAN Bus User Organization, 2016)

and TSN (Time-Sensitive Networking Task Group,

2016) (an upcoming but not yet finalized IEEE

standard and the successor of AVB) for

investigation. Industrial communication protocols

like Ethernet/IP are implemented on application

layer based on TCP/UDP over IP communication

stacks. Protocols in this category are usually highly

compatible and do not require special hardware or

modifications. However, due to the use of the entire

Internet stack cycle times are generally higher than

those achieved by protocols implemented based on

lower communication layers. The studied protocols

are instead implemented directly on top of Ethernet

and achieve significantly lower cycle times. Thus,

the application of OpenFlow and software-defined

networking to real-time networks of the second

category is technologically more challenging and

findings and improvements are more likely to be

transferable to protocols of the first category.

Additionally, our selection of protocols covers both

time triggered and polling-based protocols as well as

protocols that use the entire Ethernet stack or only

parts of the stack. For an analysis of the features of

the studied real-time Ethernet protocols with respect

to SDN we group the features in the following

categories. (1) Performance: quantifiable

measurements about the RTE solutions. (2)

Compatibility: RTE solutions usage of standard

Ethernet features. (3) Features relevant for SDN:

Specifics of RTE protocols that are relevant for

SDN.

The performance of an RTE can be described by

cycle times and data rate. The cycle time is the

duration of one transmission cycle, which is usually

repeated as long as the network is operating. The

cycle time is relevant for applications that need to

transmit small amounts of data often. The data rate is

the maximum achievable rate of data that can be

transmitted over a single link under optimal

circumstances. The data rate is important for

applications that want to transmit large amounts of

data. Both the cycles times and data rates given in

Table 1 are for optimal conditions and are not

necessarily achievable in practice.

RTE protocols are all based on Ethernet, but use

different network modes and some change Ethernet

standard formats. Network mode describes whether

the RTE currently uses switches or hubs. All RTE

protocols we consider can transmit non-real time

traffic (for example web traffic) in time slots not

reserved for higher priority traffic. VARAN uses its

own kind of frame, while all other protocols we

analyzed use standard Ethernet frames.

RTE solutions have two basic operating

principles: Time scheduled and polling. In polling a

single master server queries all clients according to

its internal schedule. The clients are only allowed to

transmit data in response to a query by the server. In

a time scheduled network a pre-defined schedule is

shared by all devices. The schedule describes which

device is allowed to transmit at which time. While

both time scheduled and polling based RTEs

typically use a schedule, in polling the schedule is

known only to the server and can be changed

dynamically more easily. To use a distributed

schedule precise time synchronization is necessary.

In case of link failures (such as cable breaks)

some RTEs offer redundancy features, which

automatically use alternate links to transmit the data

and thereby hide the failure from the application. A

broadcast (transmission from one-to-all devices) can

be used to implement a multicast (one-to-some) by

filtering out frames at the devices which are not

intended to receive the frame. A more efficient

method which we call real multicast is to transmit

the frame only to the intended receivers in the first

place. Using multipath routing several paths can

deliver data from a source to a destination. This can

be used for redundancy or to increase the data rate.

We define concurrency as the ability of two pairs of

senders and receivers to simultaneously

communicate. This feature is, for example, easily

achieved using switches, but not using hubs.

Network topology describes the configuration of

network devices the RTE solution supports. Hot

plugging is the ability to connect and disconnect

devices during network operation. Note that it is

necessary to prepare the configuration for devices to

be hot plugged in advance in some RTE protocols.

One of SDN’s main capabilities is the fine-

grained control of data flows in the network.

Therefore, RTE features like broadcasting, real

multicasting, concurrency, arbitrary topologies,

redundancy and multipath routing will be as

realizable using SDN as using more traditional

networking approaches – SDN will potentially even

allow a more efficient solution. However, one key

limitation needs to be pointed out: Standard SDN

devices currently do not support frame forwarding at

precise points in time and, thus, do not naturally

support time scheduled protocols. However, adding

the notion of time does not conceptually contradict

the use of SDN and is thus rather an implementation

issue.

5 ADVANTAGES OF SOFTWARE-

DEFINED REAL-TIME

ETHERNET

In this section we discuss the advantages of applying

software-defined networking to the design and

implementation of real-time Ethernet. Some

described features may already be supported or

could be implemented with sufficient effort in

existing solutions. However, even in those cases the

use of SDN would still provide the advantage of

being able to use an existing, consistent framework

to implement all described advantages in a simpler

way. Additionally, SDN enables features (e.g. the

active use of network loops) that are not possible in

existing solutions.

Table 1: A comparison of real-time Ethernet protocols and features and their relevance for SDN

 TSN Profinet TTEthernet Powerlink VARAN

Performance

Min. cycle times 30 μs + 31.25 μs <100 μs <100 μs <100 μs

Max. data rate 1 Gbit/s + 100 Mbit/s 1 Gbit/s 100 Mbit/s 100 Mbit/s

Compatibility

Network devices Switches Switches Switches Hubs Hubs

Non-RT traffic Yes Yes Yes Yes Yes

Ethernet frames Yes Yes Yes Yes No

SDN relevant

Operating principle Time schedule Time schedule Time schedule Polling Polling

Redundancy Yes Ring/multi-

controller

Dual and triple Ring and dual No

Real multicast Yes No ? No No

Broadcast Yes Possible/not used Yes Yes Master to slaves

Multipath routing Yes No Yes No No

Concurrency Yes Yes Yes No No

Topologies Arbitrary Line, tree, star, ring Line, tree, star,

ring

Line, tree, star,

ring

Line, tree, star

Hot plugging Yes Yes ? Yes Yes

5.1 Advantages not related to path
selection

Central configuration: Centralized software-based

(re-)configuration of network devices is a key

feature of SDN. It enables centrally controlled

configuration of network nodes both with regard to

device settings and communication patterns (this

advantage has also been named “Flow Engineering”

(Gopalakrishnan, 2014) or “Central Resource

Management” (Kalman, 2014)). In difference to

current RTE solutions where device settings and

communication patterns are often configured once

during design, using an SDN approach device

settings and communication paths and schedules can

be adapted on-the-fly with little or no disruption.

From an application point of view a different

production objective in a factory or a new feature in

an autonomous vehicle could be activated through a

software update even if the requirements towards the

underlying RTE network changes, for example

because certain sensor data is required at a higher

rate or from a different set of connected sensors.

Standardization: First, OpenFlow defines a set of

functionalities that all OF compatible network

devices must fulfill and a standard interface to

access these functions (also mentioned as “open

standards-based and vendor-neutral” in (Kalman,

2014)). Second, as the intelligence is mostly located

in the centralized controller, the network devices are

comparatively simple. These two properties lead to

simple, exchangeable, inexpensive, and future-proof

network devices (except the SDN controller).

Global network information: OpenFlow-

compatible network devices can collect a many

usage statistics such as the number of received/sent

frames/bytes per flow/port/queue. This information

can help with error diagnostics and

performance/traffic pattern evaluations. This feature

is more valuable for real-time Ethernet networks in

which the RTE controller does not already have a

comprehensive overview of most or even all

communication.

5.2 Advantages related to
switching/routing/path selection

Central addition and removal of network nodes:

Based on OpenFlow network nodes can be

dynamically added to or removed from the real-time

network at network level and removed nodes would

no longer receive messages. Using this feature

machines, sensors or actuators can, for example, be

dynamically recombined to fulfill different tasks.

Arbitrary topology: Currently existing protocols

usually support only standard Ethernet topologies

and do not permit the existence of loops on network

level and algorithms like spanning trees protocols

are used to block redundant paths. Due to the central

configuration of communication paths the existence

of loops does not pose a problem for SDN and

arbitrary network topologies can even be actively

exploited.

Fast reroute and failover: Additional links in the

network can be used as backup routes in case of

failures in the network. This feature can be more

easily implemented for polling-based RTE protocols

which often use broadcasts. In case of link failures,

frames can be rerouted (Pfeiffenberger et al., 2015)

transparently for end nodes as long as the frames

arrive in time. For time-scheduled protocols the

schedules in the network devices might have to be

adapted after an incident to avoid congestion in the

backup paths. For zero-loss/zero-time failover, flows

can be duplicated on the network layer and delivered

via two distinct paths.

Multiple simultaneous communication paths:

Additionally available network links cannot only be

used as backups in case of failures but also to

increase available bandwidth during normal

operation. Even multipath routing is imaginable, that

is, splitting up and delivering flows via multiple

paths.

Multiple networks over one infrastructure: An

OpenFlow-/SDN-based approach to RTE networks

could enable or simplify the operation of multiple

real-time Ethernet networks over a single physical

infrastructure, for example, in the most simple case

by reserving half of the time for network 1 and half

of the time for network 2. The devices in the two

networks would never receive messages from the

other network and thus this sharing of the physical

infrastructure could be completely transparent to the

participating devices. Such a setup may require

some form of time synchronization between devices

in the two networks which could take place in a third

virtual network. This feature could be highly

attractive for many polling-based protocols as such

an operation can currently not be supported (due to

the use of broadcasting for communication). For

some time-based protocols like TTEthernet such a

behavior could already be supported conceptually

but the use of SDN would still significantly simplify

the implementation by guaranteeing safety

properties (e.g. nodes in network 1 will never see

messages from nodes in network 2) similar to a

virtualization layer in computing.

Isolation of faulty nodes: Using OpenFlow faulty

network nodes can be easily disconnected from the

network in the sense that messages of faulty nodes

can be simply dropped at the closest functioning

network node. The isolation of faulty network nodes

consists of two separate problems: The detection of

faulty behavior through the RTE and/or SDN

controller and the disconnection of the faulty node

through the SDN controller. Detection of very basic

faults can, for example, be done through simple

SDN-based frame counting. For the detection of

complex faults the cooperation between RTE

controller and SDN controller is likely necessary.

Even a selective isolation of a node is possible:

correct frames are allowed to pass and only incorrect

frames that are sent at the wrong time or to wrong

destinations are blocked.

Dynamic load balancing: Dynamic load-

balancing allows the dynamic change of

communication paths and/or the simultaneous use of

multiple communication paths between a sender and

a receiver as a function of network load. Within the

scope of this paper/project we use the term only in

the context of asynchronous traffic which potentially

has more volatile communication patterns that are

not known beforehand but less strict latency

requirements compared to isochronous traffic.

Efficient multicasting: When delivering multicast

traffic using OpenFlow, it is comparatively

straightforward to avoid sending frames over a link

if there is no subscriber of that multicast traffic at

the other end of the link. In difference to standard

Ethernet implementations where multicast frames

are actually broadcasted in the network, this can

both be a security benefit and to save bandwidth.

More efficient bandwidth usage through efficient

multicasting is possible for real-time Ethernet

protocols which allow multiple parallel

communication flows. And protocols that only allow

one sender in the network at any time would still

benefit from a security point of view as nodes that

are not subscribers of the multicast traffic would not

receive any of those frames.

6 DISADVANTAGES AND

POTENTIAL PROBLEMS

Implementation of RTE using current SDN

technology: The most important feature a RTE

network has to implement is the deterministic

guarantee of traffic latency. To make these

guarantees usually polling or predefined

communication schedules are used. If the creation of

a polling-based software-defined RTE network was

the goal, hubs would have to be replaced with

switches. To implement a software-defined RTE

network based on predefined schedules the SDN

switches would additionally need to have a notion of

time and schedules. While we do not know any

conceptual reason which would prevent the support

of time schedules in SDN switches, we are not

aware of any standard SDN switches which support

schedules. Additionally, when low cycle times are

required, the performance guarantees depend on the

achievable forwarding latency and jitter of SDN

switches. It is necessary to measure the performance

of SDN switches and compare it to current Ethernet

switches and hubs used for RTE. Finally, SDN in

general does not dependent on the use of Ethernet-

compatible frames, however current OpenFlow-

compatible switches do pose that requirement.

Disadvantages introduced by SDN: One key

disadvantage of SDN is the need for a controller.

Such a controller is a single point of failure (if not

replicated, see section II) and a controller failure

would disable further central network

configurations. However, this shortcoming prevents

only use cases in which it is necessary to reconfigure

the network while deterministic traffic is transferred

over the network. In all other cases, the guaranteed

performance would not be affected even if the SDN

controller failed, only reconfiguration would be

disabled.

7 VALIDATION CONCEPT

We are currently developing a proof-of-concept

based on openPowerlink and SDN switches.

openPowerlink is an open source implementation of

the Powerlink real-time Ethernet protocol. A real-

time Ethernet network with a cycle time of 1 ms has

been built based on openPowerlink and OpenFlow-

capable switches in our test lab. We are currently in

the process of implementing key use cases to

demonstrate some of the advantages described in

this paper. Particular emphasis is put on

demonstrating use cases which can be easily

implemented using SDN but would be complex or

impossible to implement using current standard RTE

technologies. Finally, we focused on network level

reconfigurations in this paper. However for the

implementation of some of the described

advantages, a tight integration and interaction with

the respective RTE protocol would be necessary

(e.g. to distribute new time schedules to the network

devices). Thus, the long-term goal is to develop a

complete software-defined real-time Ethernet

solution in which the OpenFlow controller is

integrated in the RTE devices and seamlessly

interacts with the RTE protocols and its features.

8 CONCLUSION

We first described software-defined networking and

features of real-time Ethernet solutions from a SDN

point of view. Then we analyzed the advantages and

disadvantages of the application of SDN approaches

to RTE networks and described how we plan to

demonstrate the advantages in practice. We conclude

that the development of a software-defined real-time

Ethernet is a highly promising endeavor and are in

the process of validating our concepts in a test

network.

(This work was partially funded by the Austrian

Federal Ministry for Transport, Innovation and

Technology in the project OpenheaRTEd, FFG No.

849972.)

REFERENCES

Dürkop, L., Jasperneite, J., Fay, A., 2015. An Analysis of

Real-Time Ethernets With Regard to Their Automatic

Configuration. In IEEE World Conference on Factory

Communication Systems (WFCS).

Ethernet Powerlink Standardization Group, 2016. Ethernet

Powerlink Communication Profile Specification.

Version 1.3.0.

Gopalakrishnan, A., 2014. Applications of Software

Defined Networks in Industrial Automation.

International Electrotechnical Commission, 2014.

Additional fieldbus profiles for real-time networks

based on ISO/IEC 8802-3. IEC Standard 61784-

2:2014, section CPF3.

Jain, S., Kumar, A., Mandal, S. et al., 2013. B4:

Experience with a globally-deployed software defined

WAN. ACM SIGCOMM Computer Communication

Review, vol. 43, no. 4, pp. 3-14.

Kalman, G., 2014. Applicability of Software Defined

Networking in industrial Ethernet. In IEEE

Telecommunications Forum (TELFOR).

McKeown, N., Anderson, T., Balakrishnan, H. et al.,

2008. OpenFlow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, pp. 69-74.

Open Networking Foundation, 2015. OpenFlow Switch

Specification Version 1.5.1.

Pfeiffenberger, T., Du, J. L., Bittencourt, P., et al., 2015.

Reliable and Flexible Com. for Power Systems: Fault-

tolerant Multicast with SDN/OpenFlow. In 7th IFIP

Conf. on New Technologies, Mobility and Security.

SAE Aerospace, 2011. Time-Triggered Ethernet. SAE

Aerospace Standard AS 6802.

Time-Sensitive Networking Task Group, 2016.

http://www.ieee802.org/1/ pages/tsn.html

VARAN Bus User Organization, 2016. “VARAN Real-

Time Ethernet”.

Yazici, V., Sunay, M. O., Ercan, A. O., 2014. Controlling

a software-defined network via distributed controllers.

arXiv preprint, arXiv:1401.7651.

Yeganeh, S. H., Ganjali, Y., 2012. Kandoo: a framework

for efficient and scalable offloading of control

applications, Workshop on Hot Topics in Software

Defined Networks.

	1 INTRODUCTION
	2 RELATED WORK
	3 SOFTWARE-DEFINED NETWORKING BACKGROUND
	4 REAL-TIME ETHERNET FEATURES
	5 ADVANTAGES OF SOFTWARE-DEFINED REAL-TIME ETHERNET
	6 DISADVANTAGES AND POTENTIAL PROBLEMS
	7 VALIDATION CONCEPT
	8 CONCLUSION

