
Evaluation of Software-Defined Networking for
Power Systems

Thomas Pfeiffenberger and Jia Lei Du
Advanced Networking Center, Salzburg Research
Jakob Haringer Str. 5/3, 5020 Salzburg, Austria

{thomas.pfeiffenberger, jia.du}@salzburgresearch.at

Abstract—A highly available and secure communication in-
frastructure is one of the major prerequisites for modern power
systems. In this paper we evaluate the use of a software-defined
networking infrastructure in the domain of energy communi-
cation networks. The advantages and potential risks of using
software-defined networking at the current stage of development
in productive networks are investigated. Test scenarios are defined
based on IEC 61850 traffic specification to perform traffic
measurements using the OpenFlow standard and real network
devices. Software-defined networks have the potential to offer
significant advantages over conventional networks. However, we
will show through our analysis and measurements that there are
still open issues that need to be solved before usage in a productive
environment.

I. INTRODUCTION

Electrical grids are evolving into so-called smart grids.
Visions of future power systems include increased efficiency,
reliability, robustness, faster innovation cycles, and more de-
centralized power generation with the integration of sustainable
energy sources. To achieve these goals, highly sophisticated
measurement and control systems are required, which in
turn are based on state-of-the-art communication technolo-
gies. Communication technologies for smart grids need to
be reliable, robust, adaptive, readily deployable, secure and
support higher bandwidth than in the past. A multitude of
heterogeneous services and applications may have to be sup-
ported with different requirements regarding bandwidth and
latency. Software-defined networking (SDN) is a new trend in
communication technologies in recent years that may help to
realize these requirements. In this paper we will evaluate the
suitability of software-defined networking for energy commu-
nication networks. To the best of our knowledge only one paper
has been published that applies the available research in SDN
to the area of energy communication networks at the time of
writing. In [1] a system is described that enables energy net-
work operators to add and remove IEDs and monitoring nodes
to a substation using a configuration loader. The configuration

Pfeiffenberger, T.; Jia Lei Du, ”Evaluation of software-defined network-
ing for power systems,” Intelligent Energy and Power Systems (IEPS),
2014 IEEE International Conference on, pp.181-185, 2-6 June 2014
doi: 10.1109/IEPS.2014.6874175, http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6874175&isnumber=6874158

c©2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

loader parses IED files to extract communications requirements
and determine a suitable network configuration that is down-
loaded to the network devices through an OpenFlow controller.
The implementation was tested in an emulated network. In
our paper we instead focus on i) the advantages and potential
risks of using software-defined networking at the current stage
of development in productive networks and ii) investigate
if SDNs can fulfill communication requirements of energy
communication networks regarding properties like latency and
failover times. Software-defined networking offers numerous
advantages over conventional networks in the areas of network
operation and setup, security and quality of service. But at
the current development stage SDN potentially suffers from
possible reliability and security issues related to incomplete
specifications and the use of a centralized controller. However,
solutions for these issues have already been proposed in the
research community. We will also show through performance
measurements using real network devices that early implemen-
tations of software-defined networks already show promising
results but may not be suitable for productive use in energy
communication networks yet.

II. SDN FOR ENERGY COMMUNICATION NETWORKS

In conventional communication networks, traffic flows
are established based on forwarding rules that are locally
determined using distributed algorithms. In contrast to this
approach, traffic flows in software-defined networks (SDNs)
are centrally configured by network applications via so-called
controllers [2], [3]. This effectively decouples the control
plane, which determines where traffic is sent, from the data
plane, which forwards packets to their destinations (Fig. 1).
One simple example for a configuration setting in a SDN
would be ”forward all packets from IP address X to port
Y”. The configuration of flows can be done proactively or
reactively. In the case of using proactive flow configurations,
network devices are programmed in advance. When packets
that match some pre-programmed patterns arrive at a net-
work device, the respective associated actions are performed.
When using reactive flow configurations, packets for which
no suitable pre-determined rules can be found are sent from
the network devices to the controller. Network applications
then determine how to handle the packet and can choose
to insert new proactive rules for these packet types in the
network devices via the controller. Network applications can be
programmed or purchased in application stores and combined
to solve specific network problems. To support decision mak-
ing network applications can obtain detailed traffic statistics
from network devices and thus construct an up-to-date global



Fig. 1: Software-Defined Networking

network view. One common standard for the implementation
of software defined networks is OpenFlow. The OpenFlow
standard defines a communication protocol between network
switches forming the data plane and one or multiple controllers
forming the control plane. In this paper we will use OpenFlow
version 1.3 for our analysis of SDN-related risks and benefits.

A. Risk Analysis

One key risk of a SDN is related to the availability of
the controller. To mitigate the risk of controller unavailability
usually the use of multiple controllers in an SDN is suggested.
A solution that is already in productive use is presented in [4].
Network devices are controlled by a single controller with
multiple replicated controllers on warm standby. System with
multiple active controllers are described in [5], [6]. In differ-
ence to the solution above, all controller nodes are actively
used for load-balancing. Commercials solutions with teams of
controllers and failover mechanisms [7] or up to 5 controllers
in active/active mode [8] are also available. However, no
further technical details are given in these cases. Another
approach to mitigate the effects of a permanent controller
failure is to proactively set up important flow paths without
an expiration time. The ability to dynamically control flows
in the network would be lost during the blackout but the
already established flow paths would continue working as pre-
programmed.

A second type of potential security vulnerability in
OpenFlow-based SDNs is caused by the lack of specifications
for granular access control and the resolution of conflicting
flow rules. This can result in conflicting flow rules in the
network devices caused by network applications with different
goals or by multiple controllers accessing the same network
device. FlowVisor [9] uses virtualization techniques to create
fully separated virtual network slices in the data plane of real
network devices. FortNOX [10] administrator flow rules take
precedence over security application rules which again take
precedence over standard application rules. Resolution strate-
gies are applied in cases when conflicts arise between flow
rules issued by applications with the same authorization level.
To ensure correctness of the network flows, VeriFlow [11] can
be used to check rules to be inserted into network devices
by the controller in real-time. Properties that can be verified
include reachability, loop-freeness, and consistency.

Potential security issues that originate from the data plane
are shown in [12]. SDNs operating in reactive mode are vulner-
able to information disclosure attacks. In reactive mode the first
packet of a new flow is forwarded to the control plane resulting
in a longer round trip time for the corresponding reply. Thus
it is possible to find out if a flow between two devices already
exists and for example reveal applications that are installed on
the devices. This type of attack can only be executed if flow
aggregation is used. Flow aggregation summarizes multiple
flows in a single rule using wildcards. If the rules inserted in
network devices are separated for each flow, this attack is not
possible. Other suggested means to counter this type of attack
are the use of proactive flows or increasing the variance of
measurable response times through randomization. A denial-
of-service attack through the creation of packets with randomly
modified headers which will eventually lead to overflowing
flow tables in the network devices is also described in [12].
One suggested solution is to apply rate limiting to reduce the
number of incoming packets per interface.

B. Advantages of SDN

The basic idea of SDN is to route traffic through the
network using a central controller. By monitoring network-
wide state, the controller obtains an up-to-date view of the
network and can dynamically adapt flows in real-time. From
a technical point of view, the concept of SDN allows a
wide range of traffic engineering and security applications.
For example flows can be dynamically rerouted based on
load or failure scenarios to guarantee certain bandwidth and
latency properties or implement fast failover mechanisms. Or
flows could be dynamically and transparently rerouted for
security inspection. From an economic point of view, SDN
has potential in simplifying and reducing costs of network
setup and operation through standardization, centralization,
simplified simulation and automatic verification.

In [13] it is shown how software-defined networking based
on OpenFlow significantly simplifies the creation of VLANs
as the configuration can be performed centrally and not switch-
by-switch anymore. More generally, tools like FlowVisor [9]
can be used to create isolated virtual networks and simplify
the setup of multitenant networks on shared infrastructure.
The authors of [4] state that software-defined networking
simplifies simulation and verification as it is easier to simulate
a deterministic central server than the asynchronous behavior
of distributed routing protocols. Using tools like FortNOX [10]
and VeriFlow [11] network configurations can be automatically
checked in advance or in in real-time for security violations
and conflicting or incorrect flow rules before deployment in
the real network.

Software-defined networking allows granular dynamic traf-
fic engineering, thus available bandwidth can be efficiently
used and there is less need for overprovisioning [4]. Another
example for a traffic engineering application is Aster*x, which
can be used for load-balancing in arbitrary networks [14]. The
authors point out that every service in the network can have
its own load-balancing strategy and the load-balancing can be
quickly adapted to changing requirements or changes in the
network structure.

SDN can be used to centrally control traffic flows and their
entire path. This can increase network security as unidirec-



tional networks flows can be created or flows can be routed
over devices that are considered more secure. In addition,
there exists a wide range of security applications based on
OpenFlow. Cloudwatcher [15] uses software defined network-
ing to transparently reroute flows so that every network flow
is guaranteed to pass by and be inspected by a network
security device. In [16] the controller transparently assigns
and frequently but irregularly reassigns random virtual IP
addresses to hosts. This approach makes it more difficult for
attackers to identify active IP addresses and to identify hosts
behind IP address. VAVE [17] helps prevent IP spoofing attacks
through source address validation by matching new flows
against known flow paths. If a packet arrives from a network
device that is not part of the SDN network, the controller
checks if the source address of the packet is known to be part
of the SDN. If that is the case, the spoofing attack is prevented
by denying the requested flow. As a final example, in [18]
the information gathering capabilities of OpenFlow are used
in combination with self-organizing maps to detect distributed
denial-of-service attacks.

III. COMMUNICATION REQUIREMENTS

Reliability and robustness in the local area communication
network of an electrical substation is a main requirement for
such a critical infrastructure that needs to be highly available.
Various redundancy protocols and network topologies such as
rings are used to make the network resilient against communi-
cation failures. It depends on the importance of the application
and the impact of a potential failure, which effort is spent to
increase the resilience of the communication system [19], [20].

To exchange data objects between Intelligent Electronic
Devices (IED), different traffic types and communication re-
quirements for services and applications are defined in [21]. To
evaluate a communication infrastructure, knowledge about the
different traffic profiles, services and applications is necessary.
The quality of the transmission of the different flows is based
on the capabilities of the involved communication devices to
fulfil these requirements. Queuing delay and loss in commu-
nication devices are primarily dependent on the performance
of the network devices. In addition, traffic and network man-
agement can also help to improve network performance and
reliability beyond the capability of a single network device.

IV. TESTBED AND TESTDEFINITION

The main focus of the testbed is to evaluate the setup and
use of a software-defined networking architecture for an elec-
trical substation but not to create a complete and correct model
of a substation regarding sent data or the communication of
services. The scope of our practical evaluation is to benchmark
the communication performance and behaviour of our system
under test (SUT). The SUT simulates a very simple IED
communication pattern based on substation topology T1-1 as
defined on page 18 in [22]. Further requirements for the setup
of the testbed are extracted from the ZUQDE project [23].
The first test case evaluates the functionality of quality of
service properties for software-defined flows. The second test
case evaluates the performance in a failover scenario.

Figure 2 shows the SUT with the PC-based IED emulator
and two HP2920 switches. The IED emulator is a Linux-based

Fig. 2: OFSE Grid Evaluation Testbed

PC with two network cards and a traffic generator. The traffic
generator [24] is able to generate network traffic with different
traffic profiles, e.g. GOOSE traffic or FTP traffic. The traffic
generator sends out packets on client 1 and receives the packets
on client 2 for further processing. The outgoing packet flow
can be configured with different parameters including packet
length or sending interval. Based on the received packets,
packet losses, latency and jitter can be calculated.

The ethernet links between the PCs and the HP2920
switches are 1000Base-T links. The links between the two
HP2920 switches are also 1000Base-T links, but the link speed
is reduced to 100 Mbit/s in the configuration of the HP2920 to
measure the quality of service properties. To support the sim-
ulation of a failover the two HP2920 switches are connected
redundantly to each other. The switches run firmware release
WB 15.14.0002 and support OpenFlow protocol version 1.0
and 1.3. For the tests, we use two different OpenFlow con-
trollers. For the first scenario the OpenDayLight controller [25]
and for the second scenario the HP controller [7] is used.

The measurement network and the configuration and con-
trol network are separated. This way the measurement itself
is not influenced by the configuration and control traffic of
the OpenFlow controller and the configuration traffic of the
measurement tool.

All devices in the testbed are synchronized to a local GPS-
equipped NTP server using the SNTP protocol [26].

In the first test scenario we generate two GOOSE-based
traffic flows from client 1 to client 2. One GOOSE flow is
prioritized. The overall data rate of a GOOSE flow is about
200 kbit/s. The network load in the network between client 1
and client 2 is very high as client 1 also generates an additional
flow to client 2 with an overall data rate of about 440 Mbit/s.
The second test scenario uses a single GOOSE traffic flow from
client 1 to client 2. During the transmission of the GOOSE
packets, the ethernet cable of the active link between the two
switches is disconnected. The duration for both test scenarios
is about 300 seconds.

For test case 1, simple packet forwarding based on MAC
addresses was configured on both switches using OpenFlow.
For test case 2, OpenFlow groups were used. A group consists
of a list of action buckets and a group type that determines



Fig. 3: Test scenario 1; Packet loss

Fig. 4: Test scenario 2; Failover

which action buckets are executed for an incoming packet.
In our test case the fast failover group type was used and
incoming packets were processed by the first live action bucket.
The liveliness of an action bucket can for example depend on
the liveliness of a port as in our case. Fast failover takes places
locally without communication to the controller to minimize
delay.

V. RESULTS

Figure 3 shows the packet loss per second of the generated
flows for scenario 1. The prioritized GOOSE flow shows no
packet loss. Its minimum delay during the measurement was
0.061 ms, the maximum delay for a few packets were 152
ms. The mean delay was calculated as 0.903 ms. The flows
without prioritization had a packet loss of about 80% during
the measurement. The result of test scenario 1 shows that
an OpenFlow software-defined network can generally be used
to transport high priority traffic but also that the delay of
prioritized traffic can still vary significantly.

The result of the second test scenario is shown in Figure 4.
The graph shows the latency of an emulated GOOSE traffic

between client 1 and client 2. The overall mean delay is about
2 ms, this value is significantly higher than in the first test.
These higher values are due to the implementation of the
HP2920 switch. For the second scenario group tables with
fast failover functionalities were used which are processed in
software instead of in hardware on the switches. The peak
values for the latency are in the range of 50-70 ms and occur
about every second. This is probably also due to the processing
of the flow in software on the switches and may be caused by
regular operations triggered in the switch or by the controller.

VI. CONCLUSION

The use of OpenFlow-based software-defined networking
in productive use in power systems cannot necessarily be
recommended at this stage yet. There are still a few open
issues that need to be solved, both from a specification point
of view as shown through our analysis as well as regarding
implementations as shown through our measurements.

On the other hand, SDN and OpenFlow offer important
conceptual advantages over conventional networks and basic



functionalities such as traffic prioritization and failover be-
havior already work as intended. One conceptual advantage
of using OpenFlow in an energy communication network as
we experienced during our tests is for example the fact that
flows can be entirely controlled and protections paths can be
entirely defined in advance. Thus, in case of a failure, the
system behaves in a well-defined and predictable way.

As part of our ongoing research project we will continue
to follow the rapid development in OpenFlow and apply SDN
to wide-area energy communication networks.

ACKNOWLEDGMENTS

The work described in this paper was part of the project
‘Open Flow Secure Grid (OFSE-Grid)‘, which was funded by
the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT).

REFERENCES

[1] A. Cahn, J. Hoyos, M. Hulse, and et al., “Software-defined energy
communication networks: From substation automation to future smart
grids,” in Smart Grid Communications (SmartGridComm), 2013 IEEE
Int. Conf. on, 2013, pp. 558–563.

[2] “Software-defined networking: The new norm for networks,” White
Paper, Open Networking Foundation, Apr. 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] S. Jain, A. Kumar, S. Mandal, and et al., “B4: Experience with a
globally-deployed software defined wan,” in Proc. of the ACM SIG-
COMM 2013 Conf. on SIGCOMM, ser. SIGCOMM ’13. New York,
NY, USA: ACM, 2013, pp. 3–14.

[5] V. Yazici, M. Sunay, and A. Ercan, “Architecture for a distributed open-
flow controller,” in Signal Processing and Communications Applications
Conf. (SIU), 2012 20th, 2012, pp. 1–4.

[6] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. of the 2010 Internet Network Management Conf.
on Research on Enterprise Networking, ser. INM/WREN’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 3–3.

[7] HP VAN SDN Controller Administrator Guide, Edition 1, Hewlett-
Packard, Nov. 2013.

[8] Cisco Extensible Network Controller Deployment Guide, Release 1.0,
Cisco, Oct. 2013.

[9] R. Sherwood, G. Gibb, and K.-K. e. a. Yap, “Flowvisor: A network
virtualization layer,” OpenFlow Switch Consortium, Tech. Rep, 2009.

[10] P. Porras, S. Shin, V. Yegneswaran, and et al., “A security enforcement
kernel for openflow networks,” in Proc. of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN ’12. New York,
NY, USA: ACM, 2012, pp. 121–126.

[11] A. Khurshid, W. Zhou, M. Caesar, and et al., “Veriflow: Verifying
network-wide invariants in real time,” in Proc. of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 49–54.

[12] R. Klöti, “Openflow: A security analysis,” Master’s thesis, Swiss
Federal Institute of Technology, Zurich, 2013.

[13] Y. Yamasaki, Y. Miyamoto, and J. Yamato et al, “Flexible access man-
agement system for campus vlan based on openflow,” in Applications
and the Internet (SAINT), 2011 IEEE/IPSJ 11th Int. Symposium on,
2011, pp. 347–351.

[14] N. Handigol, R. Johari, and N. McKeown, “Aster*x: Load-balancing as
a network primitive,” 9th GENI Engineering Conf. (Plenary), 2010.

[15] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in Network Protocols (ICNP),
2012 20th IEEE Int. Conf. on, 2012, pp. 1–6.

[16] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: Transparent moving target defense using software defined
networking,” in Proc. of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY, USA: ACM,
2012, pp. 127–132.

[17] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
openflow/nox architecture,” in Network Protocols (ICNP), 2011 19th
IEEE Int. Conf. on, 2011, pp. 7–12.

[18] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conf. on, 2010, pp. 408–415.

[19] R. Moore and M. Goraj, “Ethernet for iec61580,”
PAC World, Tech. Rep., September 2010. [Online].
Available: ”http://www.pacw.org/no-cache/issue/september2010issue/
coverstory/ethernetforiec61850/completearticle/1/print.html”

[20] N. Yadav and E. Kapadia, “Ip and ethernet communication,” Grid
Interop, Tech. Rep., 2010.

[21] Communication networks and systems in substations- Part 5, Interna-
tional Electrotechnical Commission (IEC) Std., 2003.

[22] Communication networks and systems in substations- Part 1, Interna-
tional Electrotechnical Commission (IEC) Std., 2003.

[23] T. Rieder and W. Schaffer, “Smart grids modellregion salzburg: Zentrale
spannungs- (u) und blindleistungsregelung (q) mit dezentralen ein-
speisungen in der demoregion salzburg,” Salzburg AG, Neue Energien
2020, Tech. Rep., April 2012.

[24] T. Fichtel and T. Pfeiffenberger, “CMT II: An agent based framework
for comprehensive ip measurements,” in Tridentcom 2006, Barcelona,
2006.

[25] (2014, Jan.) Opendaylight openflow controller. [Online]. Available:
http://www.opendaylight.org

[26] D. Mills, U. Delaware, J. Martin, and et al., “Network time protocol
version 4,” RFC5905, IETF, June 2010.


