
Asomnia: A Service-Oriented M iddleware for
Ambient Information Access

Karl Rehrl, Wernher Behrendt, Manfred Bortenschlager, Sigi Reich, Harald
Rieser, and Rupert Westenthaler

Salzburg Research
Jakob Haringer Straße 5/III

5020 Salzburg, Austria
E-Mail: {krehrl, wbehrendt, mborten, sreich, hrieser,

rwestenthaler}@salzburgresearch.at

Abstract. With the growing pervasiveness of information systems we
are increasingly confronted with integrating heterogeneous end-user de-
vices into existing information infrastructures. However, most existing
middleware platforms either focus on plug & work functionalities or on
multimedia streaming capabilities. Asomnia is a service-oriented mid-
dleware that combines the needs of plug & work infrastructures with the
necessities of delivering multimedia contents. We describe Asomnia’s
service-oriented architecture and show how it can be applied in different
scenarios.

1 Introduction

With the advent of pervasive information delivery and consumption, we increas-
ingly face the issue of having to integrate various new types of end-user devices
into existing information infrastructures. New middleware platforms are neces-
sary in order to prepare the transition from PC based client/server computing
to pervasive information systems, thus leading to ubiquitous information access
and the convergence of multimedia content delivery, peer-to-peer networks and
heterogeneous, context-aware devices.

The application scenario we are addressing is concerned with information
systems for travellers in the area of public transport. As passengers we are all
accustomed to textual information informing us about departure times, delays,
etc. Furthermore, we are often confronted with the fact that the information
provided is not up-to-date.

In this paper we argue for a convergent service-oriented middleware platform
that allows for multimedia information to be displayed with arbitrary devices;
by focusing on plug & work integration of devices in ad-hoc networks we are
able to provide the necessary communicative hooks for enabling display devices
to be closely connected to the information systems in the back-end in order to
provide up-to-date information.

This paper is structured as follows. Section 2 outlines the requirements that
lead to the design of Asomnia. Next, Section 3 provides a description of related



work. Following on to that, Section 4 describes Asomnia’s system architecture.
We continue with sample scenarios in Section 5 and conclude in Section 6.

2 Requirements for service-oriented middleware
infrastructure

In this section we list the requirements from an infrastructure point of view. The
latter sections will refer to these requirements.

R1 Openness with respect to devices and networks A key requirement
for pervasive infrastructures is the openness for heterogeneous devices. In the
area of public transport we are confronted with different multimedia displays
such as video walls, information kiosks or also end-user devices like PDAs or
smart phones. This means, that more and more future devices will be connected
over standard wireless networks like WLAN or Bluetooth. To assist a broad
variety of devices, we argue for building the middleware architecture upon widely
adopted device and network standards.

Moreover, in order to allow for situation aware information delivery [17, 8,
3, 4], we are increasingly forced to integrate devices with low processing power,
like sensors, micro-controllers or RFID-Tags, which require a conceptual bridge
in order to seamlessly communicate between devices.

R2 Simple construction and reconfiguration of services One of the
most important aspects of a service-oriented architecture is the modular design,
which enables a developer to easily integrate new functionality into existing
applications. This means that

1. The developer of new services is encouraged to concentrate on the develop-
ment of functionality rather than struggling with protocol details.

2. Distribution and installation of new services can be accomplished on-the-fly.
3. Services can be reconfigured (i.e., activated/deactivated/moved) within a

running middleware infrastructure.

R3 Location independent service provision Any device in need of a
certain functionality should be able to find an appropriate service irrespective of
its location. In [5] this feature is referred to as “virtualization of resources”, in
Centaurus [9] a XML based ontology is used for exchanging service capabilities.
The concept of “virtualization of resources” is particularly useful for travellers or
public transport vehicles, using the same services in local networks at different
stations.

R4 Flexible discovery mechanisms for ad-hoc networks Especially
for ad-hoc networks in pervasive settings, the reliable discovery of newly or spo-
radically available services and devices is a crucial requirement for middleware
platforms [2, 1]. Public transport vehicles arriving at a station should be able
to find the necessary services to acquire new data or to announce their arrival.
Travellers with mobile devices can use services available at a station or in a ve-
hicle. Mobile peers, i.e., devices temporarily connected with each other, should
enable arbitrary pairs of services to communicate [5].



R5 Plug & work functionality In order to support ad-hoc networks,
it is a key requirement for a middleware architecture to make the connection
process for new peers as simple as possible. This implies that new peers should
be able to get their configuration and service implementations or updates from
decentralised plug & work servers.

R6 Support for different communication modes Due to the mostly
disconnected mode of mobile devices, communication heavily depends on the
current connection status. Existing middleware systems typically depend on
one specific communication mode. Object oriented middleware systems such as
CORBA, DCOM or RMI are mainly based on synchronous remote procedure
calls and provide transaction processing functionality; event distribution sys-
tems mainly depend on message passing; other communication modes include
the usage of virtual shared memory, e.g. [12, 14]. In pervasive applications, in
case a device is connected to a network, synchronous communication is possible,
whereas a disconnected device can only make use of asynchronous communica-
tion.

R7 Grouping of services In service-oriented architectures it is often diffi-
cult to structure, combine or administer services running at different locations.
Thus, it is a key requirement to provide mechanisms for a virtual grouping of
services, which allows for allocation of access rights, multicast communication
and easier administration and monitoring.

3 Related Work

In this section we categorise existing work by providing typical examples for the
various middleware platforms. Furthermore, we point out additional examples
of middleware architectures related to our approach.

Concerning the category of service-oriented middleware we consider the fol-
lowing examples as important to our work: Jini [18], Cooltown [10] and the Open
Grid Services Architecture (OGSA) [5] by the Global Grid Forum. Jini uses the
abstraction of a federated group of resources, which can be hardware devices or
software programs. Using Jini, services can be dynamically added and deleted
during runtime in a flexible way to reflect the dynamic nature of distributed
systems. Cooltown influenced our work because of the possibility to virtually
represent physical entities, whereas OGSA is driven by the idea of providing
a higher-level concept of services for grid computing infrastructures. Especially
important to our approach are concepts for standard interface definition, lo-
cal/remote transparency and uniform service semantics.

Besides service-oriented middleware architectures other architectural styles
include peer-to-peer(P2P) middleware, distributed event systems and virtual
shared memory (VSM) middleware. JXTA [6], for instance, is a P2P platform
targeted at the development of P2P networking and it is composed of a set
of open protocols. The Hermes event-based middleware architecture [15] uses
a type- and attribute-based publish/subscribe model to build large-scale dis-
tributed systems. The EQUIP platform [7] provides a middleware infrastructure



for exploring the relationship between physical and digital artefacts. The main
characteristics are cross language integration, modularisation, extensibility, dy-
namic loading of code, state sharing and support for heterogeneity of devices
and networks.

One important issue considering pervasive applications is the convergence
of multimedia content delivery, P2P networks and heterogeneous, context-aware
devices. Most of the middleware systems discussed above only focus on one as-
pect, not considering the necessary convergence of technologies. JXTA primar-
ily addresses P2P functionality and the building of ad-hoc networks, whereas
Cooltown or EQUIP provide context information but do not care about the in-
tegration of heterogeneous devices or plug & work functionality. When it comes
to the assistance of different communication modes, Jini is not suitable to off-
line devices because of its synchronous communication mode. Hermes provides
asynchronous communication modes and event distribution but it lacks plug &
work functionalities and the support for heterogeneous devices.

In general, most systems provide only low level data or event distribution
mechanisms, but they do not provide higher level services including dynamic
configurability, plug & work functionality or the infrastructure for adaptive mul-
timedia based content delivery. In the following sections we will describe how
we addressed these issues in designing and implementing the service-oriented
platform Asomnia.

4 System Architecture

Based on an application scenario in the area of public transport and the require-
ments outlined in previous sections, we have defined an appropriate network
structure for an Asomnia network (Fig. 1) and also an architecture for middle-
ware services running on Asomnia devices.

The network structure shown in Figure 1 reflects our approach to a 2-layered,
hierarchical overlay network scheme. The network is logically divided into one
global domain (first layer) and a number of local domains (second layer). There
is one central device, called the control center, which is logically the root of the
system, hosting some root services like the central registry or a global messaging
service. This central device is the only well-know device in the Asomnia network,
all others are discovered dynamically. Devices can either register at the global
registry, or discover a local registry within their local network by IP-multicast.
Therefore, devices are able to use only local services available in their actual
local domain.

In order to be integrated in the network, each device is running a set of
middleware services responsible for certain tasks. Services on devices are using
a service infrastructure, which is defined in the device architecture. The device
architecture is mainly focused on the following goal: to provide a set of higher
level system services and an abstract concept for re-usable service components in
order to enable application developers to easily build their application services



Fig. 1. The network structure of a typical application scenario

on top of the infrastructure. Therefore, important issues are the abstraction of
the underlying devices, the provision of different communication modes, the easy
building and integration of new services and the support of plug & work func-
tionality. Consequently, Asomnia’s device architecture consists of the following
key components

– A small runtime environment, which is a combination of a core module called
Core and a communication subsystem called CoSu. With the provision of a
runtime environment, less effort has to be invested into porting Asomnia’s
service infrastructure to new devices. By implementing the communication
functionalities in a dedicated module a changing of the underlying communi-
cation protocols can be achieved by modifying simply the CoSu (cf Require-
ment R1).

– The ServiceManager component is responsible for registering and control-
ling the services of an Asomnia device. At startup services are registered
with the ServiceManager which takes care of them until they are unregis-
tered. The ServiceManager provides access methods to other local/remote
services. With its knowledge of local and remote services, the ServiceManager
is able to use either local or remote calls for executing service methods (thus
improving performance and off-line work capabilities).

– Services in Asomnia are rather coarse-grained functional entities, which are
based on an abstract service definition (cf R2). Internally, services are built
of fine-grained functional units to allow for component reuse and modular
design. However, the functional units are encapsulated behind the service
facade and can only be access via the public interface.

– The functionality of a service is defined by supporting a list of events, which
was chosen as an abstraction to allow for different communication modes.
Events can be activated from functional units or from other services by
RPC or messaging, depending on the underlying CoSu. Only the event list



of a service is used as an interface by other services for interacting with the
service (cf R3), therefore allowing for easy changing of implementations.

4.1 Communication Modes

As a key requirement we have defined the availability of different communication
modes, ranging from synchronous communication to asynchronous messaging
mechanisms. The actual communication mode used should be determined by
the applications’ needs (e.g. reliability of communication) and the connection
state of the device. In fact, we have defined the following communication modes
(cf R6):

Connection state/reliability Communication Modes

Online/reliable Synchronous RPC/Asynchronous reliable messaging
Online/unreliable Asynchronous unreliable messaging
Off-line/reliable Asynchronous reliable messaging
Off-line/unreliable No communication necessary

Table 1. Communication modes

Asomnia by now supports these different communication modes on top of
a Web Services CoSu. We believe that Web Services will play a major role in
service-oriented architectures within the next few years [5, 6, 13]. Furthermore,
the key features of Web Services e.g., openness to different platforms and hetero-
geneous devices and widely adopted standards, meet our requirements (cf R1)
defined in Section 2. To provide the different communication modes, we made
the following technical decisions:

– Synchronous, reliable communication between online devices is accomplished
by the use of SOAP-RPC, for asynchronous reliable messages between online
devices SOAP Messaging is used.

– If the receiver of an event is off-line, SOAP messages are stored at the central
messaging service, by using a local messaging service to forward the message
to the central messaging service. The messaging service is responsible for
reliable delivery and handling acknowledgements as well as timeouts.

4.2 Plug & work

On the path to ubiquitous computing, it is a key requirement to provide access
to ad-hoc networks in a convenient way. For example, people who permanently
change location and networks [11], are not likely to configure their devices and
applications constantly. Thus, we think that pervasive middleware platforms
have to provide the appropriate mechanisms for a convenient and ubiquitous
access to information systems, independent of underlying network technologies



or specific device configurations. We refer to this mechanism as plug & work and
define the following key concepts:

– Services are provided in a subdomain or specific location (cf R3). Thus,
wireless devices can always use local services in their current subdomain.

– Registry and discovery of services is based on a hierarchical concept, prefer-
ring local registries and services to more general ones (cf R4).

– Connecting new devices to the Asomnia network requires only little config-
uration settings on the device (e.g. a unique ID, the type of the device and
optionally the central registry). All other configuration settings are loaded
from the nearest plug & work service. Local plug & work services use the
central plug & work service to get configuration settings from a centralised
database server.

– Services do not have to be installed manually but can be loaded, updated
and configured from plug & work access points if necessary (cf R5).

– Specific configuration settings of devices and services can be changed re-
motely by the system operator via the control center.

4.3 Proxy Services

In some cases it is necessary to integrate a device which is not able to provide
the processing power needed to run the Asomnia middleware (or simply cannot
offer the necessary software prerequisites to execute the middleware platform,
e.g. a Java platform). Micro-controllers or sensors are examples for such devices.
In order to integrate these devices a proxy service can be used (cf R1). The proxy
service is able to communicate with the low-processing device via an appropriate
interface and a specific — often proprietary — protocol.

4.4 Member of Groups and Service for Groups

Traveller information networks in the area of public transport are typically struc-
tured hierarchically, defining groups for different kinds of transport means and
describing the dependencies between groups. Hierarchical structuring supports
the system operator in controlling, monitoring and administrating, e.g. speci-
fying access rights for services, or defining the different groups of services and
devices. Therefore, a concept for structuring services is required. Asomnia is
based on two key concepts for hierarchically structuring services (cf R7):

– A service can be a member of one or more groups by adding the service in
the “Member of Group” set property of the service.

– A service can offer its functionality to other groups by adding the services
to the “Service for Groups” set property.

5 Prototype and Sample Applications

As a proof-of-concept and demonstration of the practical applicability in real
world scenarios, we have built a prototype based on the Java 2 platform and the
the Apache AXIS toolkit.



5.1 Controlling the “Schmunzel” SMIL Player with a Conrad
C2-Unit

In our test scenario, we have built a simple demonstration network to simulate
a realistic application scenario. PC devices with “Schmunzel” SMIL players [16]
were used to emulate multimedia displays. On each PC we installed a service
component which was designed as a control interface for the SMIL player. A
simple control GUI on another PC was used as control center. Additionally, a
Conrad C2-Unit (a micro-controller based on the Infineon C164CI) connected
via the RS232 interface was integrated in the middleware infrastructure via a
proxy service thus demonstrating the possibility to integrate devices with low
processing power. The C2-Unit provides a small display for showing a few char-
acters and a numbed for entering data. This simple interface can be used for
controlling the SMIL player.

Fig. 2. The SMIL player (middle) being controlled either by a micro-controller (left)
or by the control GUI (right)

Another service component on a PC simulated a simple multimedia reposi-
tory with SMIL presentations. With the use of the Conrad controller we could
choose a SMIL presentation in the repository and tell the SMIL players to play
this presentation. The setting was perfectly suited as a showcase for the traveller
information scenario. Moreover, with SMIL as an open standard for the presen-
tation of multimedia assets and Java as an open platform for mobile computing,
the key requirement for open standards has been fulfilled (cf R1).

5.2 Experiences and Discussion

The prototype implementation of Asomnia’s service-oriented architecture was
perfectly suited to fulfill the requirements defined in section 2. The following
findings can be reported:

– The construction of the necessary services was carried out with little effort
because of the concept of abstract services and the simple event-based in-
teraction model. Because of the abstractions defined in the service runtime



environment, the service developer is not longer bothered with communica-
tion details like building SOAP messages or making remote procedure calls.

– Although Web Services are not yet fully standardised, many concepts were
adopted to the communication layer in Asomnia. In fact, Web Services
turned out to be well suited for this task because of their assistance of
different communication modes. However, Web Service technology lacks an
appropriate runtime infrastructure and the concept of higher level services.

– Especially the concept of proxy services has turned out to be a powerful
tool for integrating devices with low processing power like sensors. Devices
with low processing power are considered a necessity on the way to ambient
intelligence.

– Plug & work functionality is an important feature in pervasive computing
scenarios. The high amount of heterogeneous devices connected to the net-
work can only be managed by reducing configuration effort on the devices.
On Asomnia devices at least only the type of the device or a unique ID has
to be configured, which is considered as true plug & work functionality.

6 Summary and Conclusion

In this paper we have argued for the need of convergent middleware infrastruc-
tures for pervasive information systems. We have shown that existing systems do
not provide the necessary assistance for different communication modes, ad-hoc
networks and heterogeneous devices. In fact, many of the systems only provide
low level communication, without providing the necessary abstractions.

Thus, in our paper we have defined the key requirements for a middleware
infrastructure, which provides convergence between multimedia content delivery,
ad-hoc networks and heterogeneous, context-aware devices. We have shown the
system architecture and we have demonstrated a proof-of-concept closely related
to our real application scenario.

In conclusion, we believe that Asomnia can bridge the gap between pure
network connectivity (as provided by Bluetooth, etc.) and existing information
systems (ranging from enterprise application solutions to peer-to-peer like ap-
plications). Therefore, middleware infrastructures such as Asomnia will enable
the full potential of ubiquitous information access.

Acknowledgements

This work has been supported in part by the ASCOM Center of Competence,
Salzburg, and the Austrian Forschungsförderungsfonds.

References

1. Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy Finin, and Yelena
Yesha. Middleware for mobile information access. In DEXA Workshops, pages
729–733, 2002.



2. Harry Chen, Anupam Joshi, and Timothy W. Finin. Dynamic service discovery for
mobile computing: Intelligent agents meet jini in the aether. Cluster Computing,
4(4):343–354, 2001.

3. A. Ferscha, S. Vogl, and W. Beer. Ubiquitous context sensing in wireless envi-
ronments. In 4th DAPSYS (Austrian-Hungarian Workshop on Distributed and
Parallel Systems). Kluwer Academic Publishers, 2002.

4. Sebastian Fischmeister, Guido Menkhaus, and Wolfgang Pree. Context-awareness
and adaptivity through mobile shadows. Technical report, Software Research Lab,
University of Salzburg, 2002.

5. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the grid: An open grid services architecture for distributed systems integration.
Draft 5, Mathematics and Computer Science Division, Argonne National Labora-
tory and Department of Computer Science, University of Chicago and Informa-
tion Sciences Institute, University of Southern California and IBM Corporation,
November 2002.

6. Li Gong. Jxta: A network programming environment. IEEE Internet Computing,
V 5:88–95, 2001.

7. Chris Grennhalgh. Equip: a software platform for distributed interactive systems.
Technical report, The Mixed Reality Laboratory, University of Nottingham, 2001.

8. M. Beigl und A. Schmidt H-W. Gellersen. Sensor-based context-awareness for situ-
ated computing. In Workshop on Software Engineering for Wearable and Pervasive
Computing SEWPC00 at the 22nd Int. Conference on Software Engineering ICSE
2000, Limerick, Ireland.

9. L. Kagal, V. Korolev, H. Chen, A. Joshi, and T. Finin. Centaurus: A framework
for intelligent services in a mobile environment. In Proceedings of the International
Workshop on Smart Appliances and Wearable Computing (IWSAWC), 2001.

10. Tim Kindberg, John J. Barton, Jeff Morgan, Gene Becker, Debbie Caswell,
Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John
Schettino, Bill Serra, and Mirjana Spasojevic. People, places, things: Web presence
for the real world. In MONET 7(5), pages 365–376.

11. Leonard Kleinrock. Nomadicity: Anytime, anywhere in a disconnected world. In
Mobile Networks and Applications 1, pages 351 – 357, 1996.

12. E. Kühn and G. Nozicka. Post client/server coordination tools. In Proceedings
of Coordination Technology for Collaborative Applications, Springer Series Lecture
Notes in Computer Science, 1997.

13. Tobin J. Lehman and Allessandro Garcia. Tspaces services suite, 2001. See
http://www.almaden.ibm.com/cs/TSpaces/services.html.

14. Tobin J. Lehman, Stephen W. McLaughry, and Peter Wycko. T spaces: The next
wave. In HICSS, 1999.

15. Peter R. Pietzuch and Jean M. Bacon. Hermes: A distributed event-based middle-
ware architecture. In Proceedings of the 1st International Workshop on Distributed
Event-Based Systems (DEBS’02), 2002.

16. Siegfried Reich, Martin Schaller, and Rupert Westenthaler. Developing advanced
multimedia presentations with Java. Technical report, Sun Microsystems, June
2001. Presentation T541 at JavaOne, San Francisco, June 2001.

17. Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to context
than location. Computers and Graphics, 23(6):893–901, 1999.

18. Jim Waldo. JiniTMtechnology architectural overview. Technical report, Sun Mi-
crosystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 U.S.A., 1999. Avail-
able as http://www.sun.com/jini/whitepapers/architecture.html.


